skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Renaud, Camille"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The ensemble forecast dominates the computational cost of many data assimilation methods, especially for high‐resolution and coupled models. In situations where the cost is prohibitive, one can either use a lower‐cost model or a lower‐cost data assimilation method, or both. Ensemble optimal interpolation (EnOI) is a classical example of a lower‐cost ensemble data assimilation method that replaces the ensemble forecast with a single forecast and then constructs an ensemble about this single forecast by adding perturbations drawn from climatology. This research develops lower‐cost ensemble data assimilation methods that add perturbations to a single forecast, where the perturbations are obtained from analogs of the single model forecast. These analogs can either be found from a catalog of model states, constructed using linear combinations of model states from a catalog, or constructed using generative machine‐learning methods. Four analog ensemble data assimilation methods, including two new ones, are compared with EnOI in the context of a coupled model of intermediate complexity: Q‐GCM. Depending on the method and on the physical variable, analog methods can be up to 40% more accurate than EnOI. 
    more » « less